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Abstract. The superintegrability of Calogero–Moser–Sutherland hyperbolic model and
nonsuperintegrability of trigonometric one are shown.

1. Introduction

Integrability and interesting links to various branches of physics make the Calogero–Moser–
Sutherland (CMS) model [1–4], although formulated almost 30 years ago, still attract much
attention.

It has been observed to be relevant in context of two-dimensional (2D) gravity [5],
2D QCD [6], fractional statistics [7], quantum Hall effect [8], spin chains [9] and others.
Classical and quantum integrability, very important and specific feature of the CMS model,
has been analysed in the framework of different techniques: inverse scattering method [10],
R-matrix formalism [11], collective field method [12],W -algebra techniques [13].

Suprisingly enough, it has appeared that the rational CMS model (with and without
harmonic potential) provides an example of a rare and more peculiar type of system
than integrable ones. It has been shown to be superintegrable both on the classical and
quantum level [14–16]. In the case ofN degrees of freedom this means that in addition
to N global, functionally independent integrals of motion in involution there exist further
N−1 global, functionally independent integrals of motion not depending explicitly on time.
Classically, an intersection of the level surfaces of all 2N −1 integrals determines uniquely
the trajectories of the system in the phase space. In the case of the compact energy surface
these trajectories are closed and motion is strictly periodic. The harmonic oscillator and
Kepler problem are well known examples of such a system. At the quantum level the
superintegrability is related to degeneration of energy.

In this paper we show, referring to the projection method, the superintegrability of the
hyperbolic CMS model governed by the Hamiltonian

H = 1

2

N∑
i=1

p2
i +

g2

2

∑
i 6=j

a2

sinh2 a(qi − qj )
(1)

and nonsuperintegrability of the trigonometric CMS model, the Hamiltonian of which can
be obtained from the previous one by replacinga → ia. These results obviously imply
the nonsuperintegrability of general elliptic CMS model where potential is given by the
Weierstrass function.
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One may wonder why the two models, related to each other by simple analytic
continuation, exhibit such different behaviour—one of them is superintegrable while the
other is not. However, this can be understood as follows. The integrability means that
there existn globally defined integrals of motionFi, i = 1, . . . , n which are in involution.
If the resulting hypersurfaceFi = constant,i = 1, . . . , n is compact (and connected,
but this assumption is not critical), the Arnold–Liouville theorem [17] implies that it is
a (n-dimensional) torus. If one now takes specific combinations of the integralsFi (i.e.
action variables) as new momenta then the canonically conjugated position variables (angle
variables) are not globally well-defined functions on phase space (they are just angles
parametrizing the Arnold–Liouville tori); only the trigonometric functions of them are well
defined. The angle variables have linear time dependence

ϕI (t) = ωi(J )t + ϕi(0). (2)

One can therefore construct out of themn independent but time-dependent integrals of the
form:

ϕi − ωi(J )t = ϕi(0). (3)

Now, in order to obtainN −1 time-independent integrals one has to eliminate explicit time
dependence. It is easy to see [18] that the resulting integrals are not globally defined (and
no functions of them are) unless all rationsωi(J )/ωk(J ) are rational numbers; in the latter
case one obtainsN − 1 additional integrals by taking appropriate trigonometric functions
(this is nicely discussed in [18]). Let us now assume that the hypersurfaceFi = constant
is noncompact and topologically trivial. Then, in general, there is no obstruction for the
canonically conjugated ‘angle’ variables to be globally well defined and the procedure
leading to time-independent global integrals of motion is straightforward; in particular no
condition on ratiosωi(J )/ωk(J ) is necessary. Let us stress that if two systems (compact
and noncompact ones) are related by simple transformation of variables they both possess
(or do not possess) the same number of local integrals of motion; however, in the compact
case some of them may fail to be globally defined despite the fact that their noncompact
counterparts are globally defined.

Let us give a simple example illustrating the above remarks. Consider two uncoupled
harmonic oscillators:

H =
(
p2

1

2m
+ mω

2
1

2
x2

1

)
+
(
p2

2

2m
+ mω

2
2

2
x2

2

)
. (4)

The general solution to the equations of motion reads

xi = Ai sin(ωit + ϕi)
pi = mωiAi cos(ωit + ϕi) i = 1, 2

(5)

this system is obviously integrable, the relevant integrals of motion being the energiesHi
of both oscillators. These integrals are related to theAi constants

Ai =
√

2

mω2
i

Hi. (6)

The remaining integrals read

ϕi = arcsin
xi√
2
mω2

i

Hi

− ωit (7)
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so there exists one additional time–independent local integral

ω1ϕ2− ω2ϕ1 or ϕ2− ω2

ω1
ϕ1. (8)

However, it is not defined globally and, due to the fact that the replacementϕi → ϕi+25ni
results in the changeϕ2− ω2

ω1
ϕ1→ ϕ2− ω2

ω1
ϕ1+ 25(n2− ω2

ω1
n1) no function of it is globally

defined unlessω2/ω1 is rational. In the latter case we can take, for example,

sin(kϕ2− lϕ1)
ω2

ω1
= k

l
(9)

as an additional integral. Let us now make a simple replacementxi → ixi , t → it . Then

H →
(
p2

1

2m
− mω

2
1

2
x2

1

)
+
(
p2

2

2m
− mω

2
2

2
x2

2

)
(10)

and the solution to the modified equations of motion read

xi = Aieωi t + Bie−ωi t
pi = mωi(Aieωi t − Bie−ωi t ).

(11)

As in the ‘confining’ case both energies are globally defined over the phase space; however,
in this case one can construct additional global integral of motion. It reads

ω2 ln

(
x1+ pi

mω1

)2

− ω1 ln

(
x2+ p2

mω2

)2

. (12)

Let us note that both integrals (9), (12) are defined locally except the hypersurface
H1 ·H2 = 0. However, the integral (12) is defined globally irrespectively of the value that
the ratioω1/ω2 takes. Turning the argument around lets us return to the integral (12), to the
confining case. It amounts in the replacementxi →−ixi in equation (12). Both logarithms
are then defined up to a multiple of 25 and again the value ofω1/ω2 becomes crucial.

Returning to the general case let us also note that, in the compact case the
superintegrability is equivalent to the periodicity of all trajectories [18, 19]. Indeed, any
globally defined dynamical variable can be expanded in Fourier series in angle variables
with coefficients depending on action variables. The periodicity condition is then equivalent
to the statement that all ratiosωi/ωk are rational so the additional integrals of motion
can be constructed according to the method given above. Conversely, the intersection of
2N − 1 surfaces (in general position) corresponding to the time-independent integrals is
one-dimensional (1D) closed submanifold of Arnold–Liouville torus, i.e. it is a compact
1-manifold. Therefore each of its connected component is diffeomorphic to a circle.

To conclude the introduction we present a short review of the reduction method as
applied to hyperbolic/trigonometric CMS model [3]. First we separate the centre-of-mass
motion. For the remaining degrees of freedom the solution to the Hamiltonian equations
are obtained by projecting from the simple dynamics defined on the homogeneous space
SL(N|C)/SU(N) of Hermitian positive definiteN × N matrices with unit determinant.
The dynamical flow on this space is given by the equations for geodesics (with respect to
SL(N,C)-invariant metric onSL(N,C)/SU(N); ds2 = Tr(x−1dx x−1dx)),

d

dt
(x−1ẋ + ẋx−1) = 0. (13)

(The dot means differentation with respect to time.) In order to obtain the relevant solution
to the CMS model the special form of geodesics is considered

x(t) = be2V tb+b ∈ SL(N,C) V + = V TrV = 0. (14)
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The Hermitian matricesx(t) can be diagonalized by time-dependent unitary transformation
u(t)

x(t) = u(t)e2aQ(t)u−1(t)

u(t) ∈ SU(N)Q(t) = diag(q1(t), . . . , qN(t)).
(15)

It can then be shown thatqi(t), i = 1, . . . , N provide a solution to hyperbolic CMS model
(the trigonometric case can be obtained by replacinga → ia). The proof relies on the
following equations which can be easily derived

1
2(ẋx

−1+ x−1ẋ) = 2au(t)L(t)u−1(t) = bV b−1+ (b+)−1V b+ (16a)
1
2(ẋx

−1− x−1ẋ) = iu(t)K(t)u−1(t) = bV b−1− (b+)−1V b+ (16b)

where

L(t) = P(t)+ i

4a

(
e−2aQ(t)M(t)e2aQ(t) − e2aQ(t)M(t)e−2aQ(t)

)
(17a)

K(t) = M(t)− 1
2

(
e2aQ(t)M(t)e−2aQ(t) + e−2aQ(t)M(t)e2aQ(t)

)
(17b)

M(t) = −iu−1(t)u̇(t) (17c)

P(t) = Q̇(t). (17d)

With the help of the above relations one obtains the following Lax-type equations

iL̇ = [M,L] (18a)

iK̇ = [M,K]. (18b)

In fact the second Lax equation (18b) is trivial because, as it follows from equation (16b)
K is just the value of moment map and, therefore, is a constant. Now, specifying,L,M

matrices to be the Lax-pair for hyperbolic CMS model

Ljk = pjδjk + i(1− δjk)ag coth(qj − qk) (19a)

Mjk = ga2

(
δjk
∑
i 6=j

1

sinh2 a(qj − qi)
− (1− δjk) 1

sinh2 a(qj − qk)

)
(19b)

one finds that

Kjk = 2ga2(1− δjk) (20)

is indeed time independent and relations (17) and (18) are fulfilled. Finally, note that
b = eaQ(0) are Hermitian.

2. Superintegrability of the hyperbolic CMS model

In order to show the superintegrability of the hyperbolic CMS model we refer to the
reduction method as described in the introduction. We will construct additional integrals of
motion from the quantities

Nn(t) ≡ Tr((2aL(t)+ iK(t))ne2aQ(t)) n = 0, 1, 2, . . . . (21)

By equations (14), (15) and the relation

bV b−1 = u(t)
(
aL(t)+ i

2
K(t)

)
u−1(t) (22)

which follows from equations (16a) and (16b) we can also write

Nn(t) = Tr((2bV b−1)nbe2V tb) n = 0, 1, 2, . . . . (23)
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This implies

Ṅn(t) = Tr((2bV b−1)n(2bV b−1)be2V tb) = Nn+1(t). (24)

Equations (24) provide an infinite chain of simple differential equations forNn(t)’s.
However, they cannot all be independent because we are dealing with finite-dimensional
matrices. Indeed, multiplying the characteristic equation for matrix 2bV b−1 by be2V tb and
taking the trace we obtain

N∑
n=0

cN−nNn(t) = 0 (25)

where as it is shown in the appendix

cn = (−1)N−n(2a)nJn (26)

and Jn’s are well known [3, 20, 21] integrals of motion enjoying no ordering ambiguities
in quantum theory and constructed out of another form of Lax matrix for CMS hyperbolic
model

L̃ij = piδij + iag(1− δij ) 1

sinha(qi − qj ) . (27)

Hence, our infinite chain of equations (24) reduces to the following set ofN linear
differential equations with constant coefficients

Ṅ0

Ṅ1
...

ṄN−1

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

0 0 0 . . . 1
a0 a1 a2 . . . aN−1




N0

N1
...
...

NN−1

 (28)

an = (−1)N+1cN−n. (29)

The general solution to these equations reads

Nk(t) =
N−1∑
i=0

di(2aλi)
ke2aλi t (30)

whereλi are the eigenvalues of the Lax matrixL̃ and di ’s are constants related to initial
conditionsNk(0) imposed on functionsNk(t).

In order to show thatNk(t) are globally defined time-dependent functions on the phase
space we have to show thatλi ’s are globally defined over the (allowed part of) phase space.
To this end we note thatλi ’s are the roots of characteristic polynomial of Lax matrix;
the coefficients of the polynomial are regular function of canonical variables. Therefore,
by implicit function theorem, it is sufficient to show that the derivative of the polynomial
with respect toλ does not vanish for anyλ = λi , i.e. our polynomial does not possess
multiple roots. This can be shown by considering thet → ∞ limit; then pi → p+i = λi
(up to renumbering). The eigenvaluesλi coincide nowhere due to the fact that fori 6= k,
p+i 6= p+k . Henceλi ’s are globally defined regular functions on (allowed region of) phase
space. The form of functionsNk(t) as defined by equation (21)

Nk(t) =
N∑
i=1

(2api)
ke2aqi + terms of lower order inpi ’s (31)

implies that they are functionally independent.
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Let us note in passing that up to now everything has been done in the centre-of-mass
coordinate system (where theWronskian of equations (28) is a constant of motion). However,
we can use the Galilean invariance of the model to argue that our result is valid in the general
case.

Now, solving equations (29) with respect todi ’s we obtain integrals of motion globally
defined, functionally independent but in general depending explicitly on time.

To find time-independent integrals of motion let us callA the matrix appearing on the
RHS of equation (28) and construct operators projecting on eigenspaces of this matrix

πk ≡
∏
i 6=k(A− 2aλi)

(2a)N−1
∏
i 6=k(λk − λi)

. (32)

These are regular, globally defined functions on the phase space becauseA and λi ’s are
such functions. It follows from equation (31) that

(πkN(t))i = dk(2aλk)ie2aλkt . (33)

So, as globally defined, functionally independent integrals of motion not depending explicitly
on time one can take functions:

Sn = λ0 ln((πnN(t))0)
2− λn ln((π0N(t))0)

2

= λ0 ln d2
n − λnlnd2

0 n = 1, . . . , N − 1. (34)

They provide additional (i.e. apart fromJ1, . . . , JN ) globally defined functionally
independent (becausedk ’s coefficients are arbitrary which in turn follows from functional
indepence ofNk(0)k = 0, . . . , N − 1). This proves the superintegrability of the CMS
hyperbolic model.

3. The trigonometric case

As it has been explained in some detail in the introduction, the superintegrability in the
compact case is equivalent to the periodicity of all trajectories. The following precise
argument besed on this remark shows the nonsuperintegrability in trigonometric case. One
can repeat all steps of section 2, leading to formula (30), with the replacementa → ia.
Formula (30) then becomes the Fourier series forNk(t) (note thatλi ’s, being the eigenvalues
of Hermitean Lax matrix, are real also in the trigonometric case). In order to show thatNk(t)
are, in general, not periodic it is sufficient to prove thatλi ’s are functionally independent;
this implies that the ratiosλi/λk are not generally rational. However, it is well known (in
fact, it is just the statment that the model is integrable) that the traces TrLk, k = 1, . . . , N
are functionally independent which immediately implies functional independence ofλi ’s.
Therefore,Nk(t) are, in general, not periodic and the system under consideration is not
superintegrable. As in the simple example presented in section 1, integrals (34), witha

replaced by ia, cease to be globally defined.
One should keep in mind the fact that the following argument shows immediately that

the number of globally defined integrals of motion cannot exceed 2N − 2. Due to the fact
that the total momentum is conserved the centre-of-mass moves freely on the circle (with
arbitrary velocity). Therefore the corresponding frequency can take arbitrary values.

Another obvious argument in favour of nonsuperintegrability can be given by taking the
g → 0 limit. We are then dealing with the system ofN free particles moving on a circle
and the generic trajectories are evidently not periodic.

To conclude we expect that similar methods should allow us to prove a superintegrability
of generalized CMS hyperbolic models based on other root systems. This will be considered
elsewhere.



On superintegrability of Calogero–Moser–Sutherland model 4471

Acknowledgments
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Appendix

In order to find the explicit form of coefficients of characteristic equations (25) for matrix
2bV b−1:

N∑
n=0

cN−n(2bV b−1)n = 0 c0 = (−1)N . (35)

Let us first note that due to equation (22) we have

N∑
n=0

cN−nλn = det(2bV b−1− λI) = det(2V − Iλ) = det(2aL+ iK − λI). (36)

Now, using equation (16a) one finds

bV b−1+ b−1V b = 2aU(t)L(t)U−1(t) = 2aU(0)L(0)U(0) = 2aL(0). (37)

Solving this equation with respect toV one obtains

V = aL̃(0) (38)

whereL̃ is another form of Lax matrix for hyperbolic CMS model given by equation (27).
Hence

det(2aL+ iK − λI) = det(2V − λI) = det(2aL̃(0)− λI) = det(2aL̃(t)− λI). (39)

Finally it is well known, see [3, 21], that

det(2aL̃(t)− λI) =
N∑
k=0

(−1)k(2a)N−kJN−kλk (40)

where integrals of motionJk ’s are constructed from matrix̃L as sums of its principal minors
of orderK.
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